
 

1 

 

Gravitational Waves from Mini Black Holes Binaries:    
General Relativity and Schrödinger-Newton Equation 

 

 

M.Cattani                                                                                                                                           

Instituto de Física, Universidade of São Paulo, Brasil 

(mcattani@if.usp.br) 

                                                                                                                                         

 

Abstract.                                                                                                                                  

 This is a "divertissement" paper written to graduate and postgraduate  students of  

Physics. We estimate gravitational waves  emitted by mini non-charged black holes 

binaries (μBHb) using  general relativity and a quantum mechanical approach according 

to the Schrödinger-Newton equation.                                                                                                                               
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(I) Introduction .                                                                                                
  We estimate gravitational waves  emitted by mini non-charged black holes 

binaries (μBHb) with the quantum mechanical approach based in an hypothetical non-

relativistic quantum mechanical Schrödinger-Newton equation.
  
In our analysis are also 

taken into account classical mechanics
[1]

, classical electrodynamics,
[2]  

quantum 

mechanics (QM),
[3,4]

 special relativity (SR) and general relativity(GR).
[5-7]  

In Section 1 

are shown some parameters of mini black holes (μBH). In Section 2 is seen how to 

estimate with GR the gravitational luminosity LGW = dE/dt of a black hole binary 

(BHb). In Section 3 we have assumed that μBHb obeys a Schrödinger-Newton 

equation. In this way, we have calculated the gravitational energy LGW emitted by the 

μBHb using an "hybrid" GR & QM approach. As our model is controversial, are 

presented in Section Ф, Section 4, Conclusions & Discussions and Appendix A, B 

and C many comments and discussions involving our approach 
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(1) Few Parameters of mini black holes.                                                          
 In Figure 1 is shown a mini black hole binary (μBHb) composed by two non-

charged  mini black holes masses μ = m1 = m2.
[5-7] 

 

Figure 1. Mini black holes binary (μBHb). 

 The masses μ, according to the GR
[5] 

can be arbitrarily small, however, its 

minimum mass is given by Planck mass
[7,8]

 μmin = MP = (ħc/G)
1/2

. Associated with this 

mass we have the Plank length ℓP = ħ/cMP. These values are shown below by Eqs.(1.1) 

and (1.2). The BH Schwarzschild radius
[9]

 rs = 2Gμ/c
2
 and its lifetime

[10]
 τH = 

5120πG
2
μ

3
/(ħc

4
), due to the Hawking radiation, are shown by Eqs.(1.3) and (1.4). The 

metric tensor component goo(r), given by Eq.(1.5), is written in terms of the constants c, 

G and ħ, in the MKS system,                                                                                     

                                        MP = (ħc/G)
1/2

 ~ 2 10
-8

       (Kg)                                  (1.1),                                        

                                         ℓP = ħ/cMP ~ 1.616 10
-35

     (m)                                    (1.2)                                                                          

                                          rs  = 2Gμ/c
2
  ~ 1.5 10

-27
 μ    (m)                                    (1.3), 

                                          τH = 5120πG
2
μ

3
/(ħc

4
) ~ 4 10

-18 
μ

3
  (s)                           (1.4),                                  

                                          goo(r) =  - 1- 2Gμ/rc
2                                                                                 

(1.5), 

 

(2)Gravitational luminosity of a BHb according to GR.                    
 Gravitational waves emitted by a black hole binary (BHb), with black holes with 

total mass M+ = M1 + M2 ~ 20 - 30 solar masses, have been recently detected  by Abbott 

et al.
[ 11,12]  

The unstable BHb motion can be divided into three stages:
[11-13]

 "inspiral", 

"merger" (or "plunge") and "ringdown". During this motion the BHb emits GW.
 
 The 

"inspiral" is the first stage of the BHb life which resembles a gradually shrinking orbit; 

the emitted GW are weak when BH are distant from each other.
  
During the "inspiral 

motion" with M1 ≈ M2 ≈ M* the gravitational luminosity LGW  is given by, 
[5,13-16]

  

                                      LGW  = dE/dt ≈  (8G/5c
5
)

 
M*

2 
r

4 
ω

6
                                    (2.1), 

where r is distance between the black holes and ω is the orbital rotational frequency 

described  by Kepler´s law
[1,5]

 r(t)
3
ω(t)

2 
= GM+ ≈ 2GM*. 
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 The "spiral time" τ 
[5,16] 

of the BHb can be estimated taking into account the 

total mechanical energy  E = Iω
2
/2 - GM*

2
/r  and using the "virial" theorem,

[1]   
getting  

E = - GM*
2
/2r. Taking this last result and Eq.(2.1) we have

[5]
 

                                           dr/dt = - (128/5c
5
) G

3
M*

3
/r

3
                                        that is,  

                                        r
3
 dr/dt = (1/4)d(r

4
)/dt  = -(128/5c

5
) G

3
M*

3
                       (2.2). 

Integrating Eq.(2.2) from ro up to 2rs , defined by Eq.(1.3), we have       

                                         ro
4
  = (2rs)

4
 - (128/5c

5
) G

3
M*

3 
τ                                       (2.3),    

where τ, also called "time to fall" from a generic orbit r = ro to the closest distance 2rs 

between two the BH. It is given by : 

                                      τ  =  [5c
5
/(128 G

3
M*

3
)] (ro

4
 - 16rs

4
)                                      (2.4). 

 According to LIGO observations from a BHb,
[11,12]

 known as GW150914 and 

GW151226 events, were measured the GW frequencies, in the range 30 -500 Hz, 

luminosities LGW(t) and decay times τ. Assuming that BHb were composed by masses 

M* ~ 10
30 

kg these results are in good agreement with GR estimations. The GW emitted 

by a μBHb could be evaluated  with our equations
[13]

 simply replacing  M* by μ. 

 

(3)μBHb described by Schrödinger-Newton Equation.                                                                                                                               
 According to Section 1, μBHb systems have microscopic dimensions. In 

addition to this, let us assume that in these systems interaction processes have 

microscopic energies, compatible with their dimensions. So, we postulate that μBHb 

can be described a Schrödinger-Newton equation
[17]

                                                                                                                                         

                                      H ={(ħ
2
/2μ)∆ - Gμ

2
/r }Ψ(r,θ,φ) = EΨ(r,θ,φ)                     (3.1), 

 Solving Eq.(3.1)
[3,4] 

the μBHb gravitational energies (Eg)n would be  given by 

                                                    (Eg)n = - Θgrav/n
2
,                                                    (3.2),  

where n = 1,2,3,...and                                                                                                                   

                                  Θgrav = (μ/2)(Gμ
2
)
2
/2ħ

2  
=  G

2
μ

5
/4ħ

2  
                              (3.3).                   

 On the other hand, for the hydrogen atom (HA) we have,
[3,4] 

 

                                                    (Eelect)n = - Θelect/n
2
                                                  (3.4), 

where Θelect = mee
4
/2ħ

2
  and me = electron mass. That is,

[3,4]  

                                
 Θelectr = 13.6 eV ~ 

 
10

-18 
  J                                        (3.5).  

     For the HA the "electromagnetic Bohr radius" (ao)elect is given by
[3,4]
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                                               (ao)elect= ħ
2
/me

2
 ~ 0.5 10

-10
 m                                       (3.7).                                                                              

 Taking into account Eq.(3.1), the "gravitational Bohr radius" (ao)g is given by,     

                                                       (ao)g = ħ
2
/G

2
μ

3
                                                      (3.8). 

  The electronic orbit radius (rn )elect  are given by   

                               (rn)elect = n
2
(ao)elect

 
 =  n

2
 (ħ

2
/me

2
) ~  n

2
 0.5 10

-10
   (m)                  (3.9) 

and "gravitational" radius (rn)g
 
 are given by 

            (rn)g = n
2
(ao)g = n

2
(ħ

2
/G

2
μ

3
)  ~  2.52 10

- 48
(n

2
/μ

3
)  (m)            (3.10). 

(3.1) μBHb Stability.                                                                                                       

 As well known, the Hydrogen Atom (HA) ground state with n = 1 is stable.
[3,4]

  

In this state the atomic radius r ~ 10
-10

 m that is larger than the nuclear radius ~ 10
-15

 m. 

So, the electron can be thought as moving in an orbit very far from nucleus and that it is 

an essential to the atomic stability. Of course, no BHh is stable.
[11,13]

  Our "quantum" 

μBHb in higher states n decays to small levels. If we assume that the μBHb ground 

state  n = 1 cannot be stable its "binary Bohr radius"  (ao)g = ħ
2
/G

2
μ

3 
must be must 

bigger than the Schwarzschild radius
[9]

 rs = 2Gμ/c
2
. This would occur because inside the 

sphere with radius rs  = 2Gμ/c
2
 ~ 1.5 10

-27
 μ (m) would be a "contact" between the mini 

black holes. In this way, our μBHb quantum model would be "consistent" only if its 

radius r obeys the condition  r  ≥ (ao)g. That is, when ħ
2
/G

2
μ

3
 > 2Gμ/c

2
, or                                                                                                                                                 

                                                 μ  < (ħ/c)
1/2

 G
-3/2

 ~ 10
-5

 kg                                      (3.11). 

(3.2) GW emitted by a μBHb.                                                                                                      

  In what follows we will analyze only  μBHb obeying  the condition μ < 10
-5

 

kg. Thus, as done in preceding papers,
[11-14]

we divide the μBHb motion in three stages: 

"inspiral", "merger" (or "plunge") and "ringdown". During this motion the binary 

is emitting GW.
 
 The "inspiral" is the first stage which resembles a gradually shrinking 

orbit and take a longer time; the emitted GW are weak because the black holes are very 

distant. As the BHb orbit shrinks, the speeds of the mini black holes increase, and the 

intensity of GW increases. When the black holes are close the orbit shrinks very quickly 

and they reach extremely high velocities. This is followed by a plunging orbit and they 

will "merge" once they are close enough. At this moment the GW amplitude reaches 

its peak. Once merged, the single hole settles down to a stable form, via a stage called 

“ringdown", where any distortion in the shape is dissipated as more GW.
[11-14]

   

 Remembering that the energies (Eg)n= - (G
2
μ

3
/4ħ

2
)/n

2
, the emitted 

gravitational energies ħω, between two states with n and n+1, according to Eqs.(3.2) 

and (3.3), are given by,                                                                                                          

   ħω = (Eg)n+1 - (Eg)n = -(G
2
μ

5
/4ħ

2
)[1/(n +1)

2
 - 1/n 

2
]             (3.12), 

 showing that the emitted GW can have an infinity of values.                                                                                                                                                                                      
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(3.3)Inspiral motion.                                                                                                                                

 In the inspiral motion,
[11-14] 

the mini black holes would be very distant, that 

is, when r >> (ao)g and goo(r) = -1- 2Gμ/c
2
r ≈ -1, that is,   

                                                            r  >> 2Gμ/c
2
                                                (3.13).                                                                                                

As (rn)g = n
2
(ao)g we must have when n >> 1 implying  that Eq.(3.12) can be given by 

                              ħω = E
g 

n+1 - E
g 

n ≈  -(G
2
μ

5
/4ħ

2
)(1/n

4
) =  -10

46
μ

5
/n

4  
 (J)             (3.14).  

(3.4) Gravitational Luminosity from a μBHb.                                                                                                    

  For rn ≥ 10
-30

 m, for instance, we have, using Eq.(1.5), goo(r) ~ -1, showing that 

the gravitational distortions of the metric are very small.
[5]  

As, n > 1
 
and   r >> rs 

gravitational relativistic effects will be neglected . For sufficiently large n the μBHb 

will be in the inspiral motion that is, with (rn)  > rs   and with the energy values (Eg)n 

given by, 

                                        (  Eg)n = -(G
2
/4ħ

2
) μ

5
/n

2
  ≈ -10

47
 μ

5 
/n

2        
(J).                   (3.15) 

The emitted energies ħω in the transitions  n → n + 1 are given by  

        ħω = (Eg
 
)n+1 - (Eg ) n = - μ

5
10

47
 [1/(n +1)

2
 - 1/n 

2
 ] J ≈ - μ

5
10

47
/n

4
  (J)             (3.16). 

 Taking, for instance,  μ = 10
-12

 kg we verify that 

                                             ω  ≈  10
-13

/n
4   

J
  
 ≈  10/n

4
     (rad/s)                             (3.17). 

On the other hand, if  μ = 10
-11

kg we have, instead of (3.17)                     

                                                ω ≈ 10
6 

/n
4
     rad/s                                                    (3.18),  

which means that, for large n like n ~10 we obtain 

                                                 ω ≈ 100          rad/s.                                              

 Note that recent detected GW
[11,12]

 emitted by a BHb, when M* ~ 30 solar mass, 

had frequencies ω ~ (150π  - - -170π ) rad/s.                                                                       

 Thus, μBHb mini black holes with masses μ < 10
-5

 Kg could emit GW with 

frequencies similar to those emitted by massive  BHb.                                                  
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(Ф) Comments on Schrödinger-Newton Quantization                                                                                   

 Let us consider GW with energies ħω = (Eg)n+1 - (Eg)n, given by Eq. (3.12),  

emitted in transitions n → n + 1. To occurs this emission , we believe that is necessary 

to have some kind of interaction  W(t)(what kind?) that induces transitions between the 

quantum states n → n + 1. It can be estimated taking into account a perturbation theory 

derived from Schrödinger-Newton equation.  Let us write W(t) harmonically dependent 

on the time
[4]

 

                                                   W 
± 

(t) =  w
±
 exp[±iωt]                                           (Ф.1),

]
                                                                                                                                       

where w
±
 is time independent. In the Schrödinger theory it can be shown

[4] 
that the 

transition probability m → n per unit of time P
±

nm is given by                                                                                                       

                                                                                                                             

                             P
±

nm = (2π/ħ) |< n | w
±
 | m >|

2
 δ(En - Em  ± ħω)                 (Ф.2),  

where the  + and - correspond to the signs in the exponential in Eq.(Ф.1). Thus, under 

this perturbation, transitions take place to states with energies satisfying the condition 

Em = En  ± ħω. If the perturbation is of the form  W
+ 

(t) = w
+ 

exp(iωt) the system loses an 

energy ħω (energy is emitted), since En= Em - ħω in the transition, while if it is of the 

form W
-
(t) = w

- 
exp(-iωt)  it gains an energy ħω, since En =  Em + ħω. Our main problem 

is to determine the function W 
± 

(t). The gravitational "luminosity" (LGW)nm  in the 

inspiral stage would be given by (LGW)nm = ħω P
+

nm , for very large quantum numbers.                                                                                         

 Before to propose a model to obtain W
+
(t) let us remember that according to 

Bohr correspondence principle (CP)
[3] 

for very large quantum numbers, classical and 

quantum physics are expected to give the same answer, at least in average. The 

probabilistic interpretation of the phenomenon obtained with the Schrödinger´s  

equation will give, in average the same results obtained by classical laws. Ehrenfest,    

for instance, showed that Newton's laws hold on average:  the quantum statistical 

expectation value of the position and momentum obey Newton's laws. Thus, we hope 

that in the μBHb inspiral stage properties estimations given by the "classical" GR and 

QM laws agree in average. In addition,  as seen in Appendix B and C, in Classical 

Electrodynamics the luminosities Lω , emitted by  dipolar and quadrupolar radiation 

are given, respectively, by                                                                                                                                                      

                Lω = dE/dt = (ck
4
/3) |D|

2
 = (ω

4
/3c

3
) |D|

2
             and        (Ф.3)                                                                                                                     

                 Lω = dE/dt = (ω
6
/360c

5
)Σαβ |Qαβ|

2
 .  

 In Quantum Electrodynamics they are given, by  Lω = (4ω
4
/3c

3
) |Dnm|

2
  and                   

Lω ≈ (ω
6
/2πc

5
)|Qnm|

2
 , respectively, where  ω = ωnm , Dnm = < n |D |m > and                                  

Qnm  =  < n | Q | m >.  According to the GR theory, the luminosity LGW, in the inspiral 

stage, is given by the quadrupolar radiation:
[11-14]

  

                   LGW = (32μ
2
G/5c

5
)r

4
ω

6
 = (8Gω

6
/5c

5
) M

2
r

4
 = (8Gω

6
/5c

5
)Q

2
              (Ф.4), 
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where Q = Mr
2
 is the mass quadrupole of the μBHb. Thus, by analogy with the 

predicted electromagnetic  radiation and based in the Correspondence Principle we 

could believe that the QM gravitational luminosity (LGW)nm can be estimated by 

                            (LGW)nm = ħω P
+

nm  ≈ (8Gω
6
/5c

5
) | < n | Q | m >|

2
                   (Ф.5).                                                                 

In Appendix D is shown a different approach of Weinberg
[15] 

to calculate  (LGW)nm .                                                                                                                                                                                          

 Now, let us give a reasonable justification for Eq.(Ф.5). Thus, let us assume that 

W
+ 

(t) is proportional to the small perturbations hμυ of the tensor metric gμυ created by 

the quadrupole temporal oscillations Qαβ(t)
[16,19]

 of the μBBH that are written as   

                 Qxx(t) = 3μr
2
[1 + cos(2ωt)]/2    and    Qyy(t) = 3μr

2
[1- cos(2ωt)]/2      (Ф.6). 

 where  μ = m1m2/(m1 + m2)  and ω is the orbital angular frequency (see Appendix A).  

That is, gμν is slightly modified,  gμυ ≈ gμυ
(o) 

+ hμυ, where hμυ is due to quadrupolar 

effects pointed above. Taking into account that 
[14,19] 

hαβ(t,x) = (2G/c
2
r)(∂

2
Qαβ/∂t

2
) the 

"classical" gravitational luminosity LGW
  
is given by (see Appendix A)   

LGW = (G/45c
5
) < (∂

3
Qαβ/∂t

3
)

2 
> = (G/45c

5
) [< (∂

3
Qxx/∂t

3
)

2 
> + [< (∂

3
Qyy/∂t

3
)

2 
> ] = 

                                                    = (32μ
2
G/5c

5
)r

4
ω

6
  =  (8Gω

6
/5c

5
)Q

2
               (Ф.7), 

where Q = μr
2
 is the μBBH mass quadrupole.  So, putting (LGW)nm = ħω P

+
nm ,we have 

w
+
(t) ~ hαβ(t) and using Eq.(Ф.2) we will assume that the QM the gravitational 

luminosity (LGW)nm can be estimated by                                                                

                             (LGW)nm =  ħω P
+

nm  ≈ (8Gω
6
/5c

5
) |< n | Q | m >|

2
                  (Ф.8), 

in agreement with Eq.(Ф.5). At this point it is important to analyze this proposed 

mechanism to explain the decay transitions in mBBH. Indeed, as seen in Appendix A, 

the amplitude of the emitted GW are given by Ψαβ(t,x) = hαβ(t,x) = (2G/c
2
R)(∂

2
Qαβ/∂t

2
). 

That is, GW are emitted due to the  "metric perturbation" hαβ(t). To obtain Eq.(Ф.5) a 

similar hypothesis is assumed: the time dependent metric modification is responsible by 

a potential interaction W
+
 that induces transitions n → m between quantum states. The 

gravitational luminosity would now be given by (LGW)nm = ħω P
+

nm. That is, 

gravitational quantum transitions are induced by metric perturbations due to mass  

quadrupolar effects. In the electromagnetic quantum field theory transitions are induced 

by "vacuum" fluctuations due to electric quadrupoles.        

Evaluation of the spiral time.                                                                                                      

  To evaluate the QM "spiral time" τ we must remember that in this stage, 

according to Eqs.(Ф.8) and (3.12) the energy levels E
g
n = - Θgrav/n

2
 are very close since 

quantum numbers are very large, e.g. n > 10
24

. As there is a "continuum of levels" it is 

expected, according to the CP, the mBBH description given by quantum mechanics 
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approaches asymptotically a state of motion obtained with the "classical" GR. Indeed, 

for the inspiral stage Eq.(Ф.8) can be written as  

                 (LGW)ab = (dE/dt)ab  ≈  (8Gω
6
/5c

5
) M

2
r
4
 = (8 M

2
Gω

6
/5c

5
) r

4
                  (Ф.10). 

which is similar to Eq.(2.1) given by the "classical" GR.  

 

(4)Conclusions and Discussions.                                                                          
(4.1)A reasonable agreement between the estimated luminosity and inspiral time is 

obtained with the GR and the quantum approach. So, it seems that in the mBHb spiral 

motion the effects of the gravitation interaction can be quantized in a non relativistic 

limit of Schrödinger - Newton equation.                                                                                                 

(4.2) As, in the inspiral motion, according to Appendix C, quantum states |a > and |b > 

of the mBBH are represented  by unℓm(r,θ,φ) = Rnℓ (r) |ℓm > the quadrupole matrix 

elements are written as  

                           Qab 
=   ∫dr r

4
 Ra (r) Rb (r) < ℓbmb|Y2m

*
(θ,φ)| ℓama >                        (4.2.1). 

Eq.(4.2.1) shows that, according to the Wigner-Eckart Theorem,
[4]

 quadrupole 

transitions  a → b  are allowed only if  ℓb  = ℓa  ± 2  and   mb = ma + 2 . So, if GW are 

composed by "gravitons", selection rules dictated by the matrix elements  in Eq.(4.2.1) 

suggest  that "gravitons" have spin 2.                                                                              

(4.3)According to Appendix (A.1) the gravitational luminosity LGW emitted by a BH  

binary with black holes with equal mass μ, is given by LGW = (32μ
2
G/5c

5
)r

4
ω

6
 . In the 

radiation zone the gravitational energy is transported by a plane wave with amplitude 

h(ω) given by Eq.(A.17)
[13,14]

                                                                                              

     h(ω) = (4
2/3

/√36) [(Gμ)
5/3

/Rc
4
] ω

2/3
                        (4.3.1)                                                                                                                                   

where R is distance from the BHb and the observer  at the radiation zone.                                                                                                                           
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Appendix A. Emission of gravitational waves by BHb.                                                    
  In GR 

[5,14-16]
, assuming that the gravitation field is weak and that the bodies 

have small velocities compared with the light velocity, the space-time metric tensor gμυ 

we can put gμυ ≈ gμυ
(o) 

+ hμυ, where hμυ is as mall perturbation of gμυ
(o)

.
[5,14-16]

 In the 

Newtonian limit we have goo = - 1 - 2φ/c
2
, where φ = GM/r.

[5] 
In these conditions the 

Ricci tensor Rik can be written as  
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                                                      Rik = - (1/2)□hμυ                                                   (A.1). 

 Defining  the gravitational field  as Ψμυ  = hμυ - (1/2)δμυ h, where h = hα
α
 , in 

weak field limit the field Ψμυ  obeys the equations
[5, 14-16]

   

                   □Ψμυ = - (16πG/c
4
)τμυ    and    ∂μΨ

μυ
 =  0     (gauge condition)            (A.2),                                                                                             

  where τμυ is a pseudo-tensor mass-energy momentum.                                                    

 The solution of Eq.(A.2) for retarded times is given by
[5,18]

  

                       Ψμυ(x,t) = - (4G/c
4
) ∫τμυ(t - |x - x´|/c, x) d

3
x´/ |x - x´|                        (A.3), 

 where the integration is over the volume V of the system.                                        

 Supposing that gravitational effects  are observed very far from the origin O 

("wave zone") where they are produced, that is, |x| = R >> |x |́  we get from Eq.(A.3), 

remembering that we have a retarded time function τμυ : 

                                           Ψμυ(x,t) ≈ - (4G/c
4
R) ∫τμυ d

3
x´                                        (A.4). 

Integrating Eq.(A.4) over the volume V we obtain the gravitational field
[5,13]

 

                                          Ψαβ(x,t) = (2G/c
2
R) (∂

2
Qαβ/∂t

2
)                                        (A.5), 

where Qαβ is the mass quadrupole moment of the emitting system defined by  

                                            Qαβ  = ∫ρo(x´)(3x´αx´β - r´
2
δαβ) d

3
x´                                     

where ρo is the mass density.  At this point it opportune to remember that gravitational 

multipoles are defined by the potential expansion 
[14]

 

φ(x) = -G ∫ρo(x´)d
3
x´/|x - x´| ≈ - Gm/r - (G/r

3
) x.D - (G/2r

5
)Σαβ Q

αβ
 x

α
x

β 
+ ....      (A.6),  

where   m = ∫ρo(x´) d
3
x´,  D = ∫ρo(x´) x´d

3
x´  and  Qαβ = ∫ρo(x´)(3x´αx´β - r´

2
δαβ) d

3
x´.   

The mass dipole moment is null (D = 0) since the origin of coordinates O is chosen to 

coincide with the center of mass.                  

 In vacuum we have the traditional wave equations 

                □Ψμυ = □hμυ   = 0         with the "gauge "      ∂(h
μ 

ν)/∂x
μ
  = 0                    (A.7)                             

showing that the gravitational field propagates with the light velocity. Note that the 

tensor field hμυ is obtained integrating Eq.(A.4) as will be seen later.                                    

 At this point we find a fruitful  analogy with the electromagnetism. The Maxwell 

equations in Lorentz gauge in empty space are  □Aμ = 0   and  ∂A
μ
/∂x

μ
  = 0.                           

 Let us consider a plane GW, that is, a field that changes only in one direction z 

of the space. Choosing z > 0 as the direction of propagation of the wave we can write  

hik = hik(t -z/c). So, the wave equation  Eq.(A.7) becomes  
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                                              [∂
2
/∂z

2 
 - (1/c

2
) (∂

2
/∂t

2
)] hik  = 0                                  (A.8) 

that has the familiar solution with the gauge condition, 

                                                  hik(z,t) = Aik cos(kμxμ)                                             (A.9),                                                                                                                                               

where kμ = (0,0,k,ω), k = kz = |k| = ω/c is the wave vector and ω is the frequency of the 

wave. As hik(z) obey (A.8) the following conditions are obeyed: Aβαk
α
 = 0 and kαk

α
 = 0. 

Under these conditions the amplitude tensor Aik has only 4 non-null components    

A11= - A22 
,
 A12 = A21 with the condition Tr(Aik) = Ai

i
 = 0 and only the following 

transversal components to the z-direction of propagation: Axx = -Ayy and Axy = Ayx.  

                                                Aik  = 





















0000

0AA0

0AA0

0000

1112

1211

-

                                     

The transversal fields hxx, hyy and hxy are represented using (2x2) matrices called 

polarization matrices (ε+)ik and (εx)ik :  

                          ( ε+ )ik = 








10

01
            and         ( εx )ik = 









01

10
                     (A.10)                                           

The general solution of Eq.(A.8) can be written as a linear combination of the fields hik, 

with polarizations (+) and (x), respectively:                                                                                 

             hik
(+)

 = h+ (ε+)ik cos(ωt - kz)      and     hik
(x)

 = hx (ε+)ik cos(ωt - kz + α)      (A.11), 

where  h+
 
= A11, hx = A12 and α is an arbitrary phase. The tensorial  polarization of the 

GW creates an effect much more complicate than the linear polarization of the 

electromagnetic waves. These fields deform the space-time creating tidal (shear) on the 

matter . The line forces due to the polarizations (X) and (+) are shown in Figure 2. 

                        

Figure 2. Line forces due to the polarizations (X) and (+). 

  The total energy emitted per unit of time dE/dt  or "gravitational luminosity"  

LGW is given by
[5,14]
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                                 LGW = dE/dt =  - (G/45c
5
) < (∂

3
Qαβ/∂t

3
)

2 
>                              (A.12), 

 where the brackets indicates a time average and are taken into account the effect of all 

components of the quadrupole tensor.  Note that the GW is a tensor function not a scalar 

function like an electromagnetic wave.  

(A.1)GW emitted by BHb.                                                 

 For a binary system (see Fig.1) composed by stars with masses m1 and m2
 
 

separated by a distance r one can show
[14,19]

 that  

               Qxx = 3μr
2
[1 + cos(2ωt)]/2     and          Qyy = 3μr

2
[1- cos(2ωt)]/2              (A.13), 

 where  μ = m1m2/(m1 + m2)  and ω is the orbital angular frequency. In these 

conditions  one see that hαβ(t,x), using Eqs.(A.11) and (A.13), would be given by 

                      Ψαβ(t,x) = hαβ(t,x) = (2G/c
2
R)(∂

2
Qαβ/∂t

2
) ~  h cos(2ωt)                      (A.14),  

where h = 6μGr
2
/Rc

2
.  Showing that the GW frequency is ωg = 2ω.                         

 Using Eqs.(A.12) and (A.13) we obtain 

 LGW = (G/45c
5
) < (∂

3
Qαβ/∂t

3
)

2 
> = (G/45c

5
) [<(∂

3
Qxx/∂t

3
)

2 
> + [<(∂

3
Qyy/∂t

3
)
2 
> ] = 

                                                      = (32μ
2
G/5c

5
)r

4
ω

6
                                               (A.15).  

 As the energy of the GW in the radiation zone  is transported by a plane wave 

with amplitude h and rotation frequency ω one can show that
[13,14]

 

                                               h
2
 = (8πG/ω

2
c

3
) (LGW /4πR

2
)                                    (A.16). 

            As Kepler´s  law for a binary
 [1,5]

 says that ω
2
r

3
 = G(M1 + M2) and M1= M2 = M* 

we get r = (2GM*/ω
2
)
1/3

. Substituting this r value  in Eq.(A.16) we obtain h as a 

function of the orbital angular frequency ω (rad/s):
[11,12]

 

        h(ω) =  (4GM*/Rc
4
√36)(2GM*/ω

2
)
2/3

ω
2
 = (4

2/3
/√36) [(GM*)

5/3
/Rc

4
] ω

2/3
      (A.17). 

 Recently 
[ 11-13]  

gravitational waves have been detected, with frequencies                   

ω ~ 160 π rad/s. They have been emitted by a black hole binary (BHb). The BHb, that 

was distant R ~ 1.3 10
9
 light years ~1.2 10

25
 m from the Earth had M*~ 20 solar masses. 

Using Eq.(A.17) and taking into account the BHb parameters given above we see that 

                                               h(ω)  ~ 10
-23

 ω
2/3

                                                        (A.18). 

 The  measured average amplitude < h > for frequencies  ω ~ 160 π rad/s  was 

found to be < h > ~10
-21

, in good agreement with the experimental results.  
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Appendix B. Classical electromagnetic radiation.                                      
  According to classical Electrodynamics

[2]
  

                                      □A(x,t) = - μoJ(x,t)                                          (B.1), 

 where □ is the d´Alembertian operator □ =  ∂μ∂
μ 

. The solution of (A.1)is given by
[2]

 

                      A(x,t) = μo∫ d3
x´∫dt´[J(x´,t´)/|x - x |́] δ (t´+ |x - x |́/c - t)              (B.2).  

With the sinusoidal time dependence J(x,t) = J(x) exp(-iωt)  (A.1) becomes given by  

                           A(x,t) = μo∫ J(x´) exp(ik|x - x |́)/|x - x |́ d
3
x´                             (B.3), 

that can be expanded in series taking into account that the fields are very far from the 

source, that is, r >> d  and that d << λ, where d is the dimension of the source and λ the 

wavelength of the emitted radiation.  The rate of the emitted electromagnetic radiation 

dE/dt can be calculated expanding A(x,t) using electric and magnetic multipoles. 
[2]

                                                                                                                                       

 In vacuum (A.1) obeys the equation    

                                                       □A(x,t) = 0                                                     (B.4). 

The general solutions of the above equations for A is formed by superposing  transverse 

waves
[2]

 of the field A(xμ). In second quantization context 
[4,21]

 planes waves A are 

written as (omitting details of normalization constant, wave polarization,...) where kμ = 

(k,iω/c), 

                                   A(xμ) = Σkω [akω exp(ikμxμ) + a*kω exp(-ikμxμ
 
)]                   (B.5), 

 (B.1) Emitted electromagnetic energy per unitof time dE/dt.                                                                                                                             

 If the emitted radiation is mainly due to the electric dipole D = ∫ x´ρe(x´) d
3
x´ we 

have 
[2]

 

                                             dE/dt = (ck
4
/3) |D|

2
  = (ω

4
/3c

3
) |D|

2
                             (B.6),                            

where ρe(x´) is the electric charge density and k =2π/λ = ω/c.                                            

 If the energy is mainly emitted by electric quadrupole Qαβ and by magnetic 

dipole m we can show that 
[2]

 

                                                   dE/dt = (ck
6
/360)Σαβ |Qαβ|

2
                                    (B.7), 

where  Qαβ = ∫ρe(x´)(3x´αx´β - r´
2
δαβ) d

3
x´   and  m = ∫ x´X J(x´) d

3
x´.                      

(B.2)Larmor Acceleration Formula.                                                          

 According to the classical electrodynamics accelerated charges emit radiation 

and the dominant energy loss is from electric dipole which obeys the Larmor formula 

(in Gaussian units),
[2,17]     

 

                                                    dE/dt = (2/3c
3
)|d

2
D/dt

2
|
                                                          

 (B.8). 
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 This formula can be used to estimate the classical lifetime of the Bohr atom.
[17]

 

For very large quantum numbers n, Bohr's correspondence principle (CP) demands that 

classical physics and quantum physics give the same answer, at least in average.  In 

these conditions as the energy levels are very close the radiate energy is estimated using 

the classical electrodynamics.
[17]

 So, putting D = er it is assumed that the electron 

moves in circular orbits around the nucleus emits continuously radiating energy 

according to, 

                                                        dE/dt =  (2/3c
3
)e

2
a(t)

2                                                 
       (B.9), 

 where a the electron acceleration, which is essentially the radial one ar = rω
2
. In this 

adiabatic approximation the electronic orbit remains nearly circular at all times whith   

ω ≈ constant. According to reference 
[17]

 the electron will fall to the origin, following a 

spiral motion, after a time  tfall  ~ 10
-11

 s. The observed lifetime of the 2p
1/2

 state of the 

hydrogen is ~10
-9

 s (see Appendix C). In quantum mechanics the ground state, 

however, "appears" to have infinite lifetime. The accelerated electron along a radius r(t) 

with a tangential speed vΘ(t) and angular speed ω = dΘ/dt = vΘ(t)/r emits a wave with 

frequency ω called synchrotron radiation.                                                                                                         

 Taking into account that |a| ~ ar = rω
2
 Eq.(B.9) becomes written as 

                                                    dE/dt  ≈  (2e
2
ω

4
/3c

3
) r(t)

2                                                 
 (B.10).   

Appendix C. Quantum electromagnetic radiation.                                                         
 In Special Relativity (SR) 

[2,4]
 the generalized vector potential is defined by            

Aμ = (A, iAo) = (A, iφ).  A free particle with a mass m has a 4-momentum pμ = (p, iE) 

where E is the total energy  E = (m
2
c

2
 + p

2
c

2
)
1/2

 . The 4-momentum a charged particle 

submitted to an electromagnetic field   becomes given by pμ → pμ
 
- (e/c) Aμ.  That is,     

E → E - eφ and p →  p - (e/c)A.                                                                                                                              

 The relativistic wave equation
 [4]

 for a charged spin zero particle submitted to an 

external electromagnetic field  is obtained through the transformation 

                                       pμ - (e/c) Aμ  →  - iħ ∂/∂xμ -  (e/c) Aμ                                              (C.1), 

that is 

                                   { Σμ (- iħ ∂/∂xμ - (e/c) Aμ)
2
 + m

2
c

2
 }Ψ  = 0                          (C.2),                       

or 

                              (1/c
2
)[iħ ∂/∂t - eφ]

2
 Ψ  =  [(iħ grad  - (e/c)A)

2
 + m

2
c

2 
]Ψ             (C.3). 

According
 
to quantum mechanics

[4]
 the interaction of a charged spinless particle with 

the electromagnetic radiation is given by the operator, putting p =
 
-iħ grad, 

                        W(t) = -(e/mc)(A.p) + (e
2
/2mc

2
)A

2
                            (C.4),  

where the vector potential A is written  in the form of a plane wave with wave vector k 

and frequency  ω,  A(r,t) = Ao u cos[k.r - ωt], with u the unit vector determining the 

polarization of the radiation (direction of the electric field vector). With the perturbation 

theory to evaluate the transitions probabilities, in a first order approximation, we neglect 
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the term (e
2
/2mc

2
)A

2
 since it is gives a small contribution, of the order of α = e

2
/hc 

~1/137.
[4] 

 In this way we retain only the first term of (C.4),   

                                                    W(t) =  - (e/mc)(A.p)                                             (C.5). 

 The amplitude ao will be determined in such a way that there are an average N 

photons of energy ħω and polarization u in a volume V . So, from  

                                         E= - (1/c)∂A/∂t = Ao u (ω/c) sin[k.r - ωt]                           and 

from the condition  

                       Nħω/V = < E
2
(t)>/4π = (Ao

2
ω

2
/4πc

2
) < sin

2
[k.r - ωt] > = Ao

2
ω

2
/8πc

2
 

 we see that   Ao = 2c(2πħN/ωV)
1/2

.                                                                           

 Writing  W(t) = w exp(iωt) + w*exp(- iωt) where w = Ao exp(-ik.r)(u.p) the 

transition  probability per unit of time  for a transition from a (initial) state |b > to a 

(final)state |a > with the emission of a quantum ħω will be determined by the expression  

                                           Pab = (2π/ħ) | < a |w| b > |
2 
ρ(Efin)                                     (C.6), 

where the initial energy  Einit = final energy Efin or Ea = Eb + ħω and  ρ(Efin) = ρ(ħω) 
[4]

  

is the density of final photon states dN/dε = ρ(ħω) = [Vω
2
/(2πc)

3
ħ]dΩ , remembering 

that for photons  ε = ħω and p = ε/c. The matrix element < a |w| b > is given by   

                                    < a |w| b > = - Ao < a | e
 - i k.r 

(u.p) | b >                                  (C.7), 

remembering that p =
 
-iħ grad. Since the integration of matrix element is will be 

essentially over the region (r) of the size (a) of emitting system it is convenient to 

expand the exponential factor in a power series, 

                                     e
 - i k.r 

 = 1 - i (k.r) + [-i(k.r)]
2
/2! +... =                                  (C.8). 

(C.1) Dipole radiation.                                                                                                  

 When  ka = 2π/λ << 1, where λ is the wavelength of the emitted photon, it is 

enough to consider only of the first term of Eq.(C.8) obtaining:
[4]

 

                                             < a |w| b > = - i ωab Ao(u.D)ab                                      (C.9),                                     

where D = Σi qi ri is the electric dipole moment operator of the emitting system with 

discrete charges qi. One can show that  

                                              < a |w| b > = - i ωab Ao u.(Dab)                                   (C.10), 

 where the vector  Dab = < a |D |b > is called the electrical dipole moment of the  b → a  

transition. In this way, using Eqs.(C.6)-(C.10) we get the probability per unit of time 

dPab
+
  that a photon with polarization u and frequency ω = |ωab| = (Ea - Eb)/ħ is emitted 

within a solid angle dΩ , 

                                          (dPab
+ 

)dip
  
= N (ω

3
/2πħc

3
) |u.(Dab)|

2
 dΩ                         (C.11). 
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 The polarization u is perpendicular to the direction of propagation k. If we 

denote by θ the angle between k and the dipole moment of the transition Dab we have 

|u.(Dab)|
2
  = |Dab|

2
 sin

2
θ . Thus,                                                                                          

        (dPab
+ 

)dip
 
= N (ω

3
/2πħc

3
) |Dab|

2
 sin

2
θ dΩ                        (C.12).                                

                                                                                                                                     

 Integrating Eq.(C.12) with N =1
[4]

 over all directions of the radiation we get the 

total transition probability per unit of time Pab involving the emission of one photon: 

                                                (Pab
+ 

)dip = (4ω
3
/3ħc

3
) |Dab|

2
                                      (C.13). 

To estimate the order of magnitude of Eq.(C.13) for atomic systems with linear 

dimension a we put D = er taking  |rab|
 
 = a ≈ e

2
/ħω. Thus, (Pab

+
)dip can be written as 

                                              (Pab
+ 

)dip ≈  (e
2
ω/ħc)(ωa/c)

2
   ≈  ω/(137)

3
, 

that for optical radiation (ω ~ 10
15

/s)  gives  (Pab )dip~10
9
/s. The observed lifetime            

τ ~1/(Pab)dip of the 2p
1/2

 state of the hydrogen is τ ~10
-9

 s.
[4]                                                             

  

 Consequently, energy emitted  per unit of time dE/dt will be given by (dEab )dip = 

ħω(Pab
+ 

)dip, that is,                                                                                                                                       

                                       (dE/dt)dip = (4ω
4
/3c

3
) |Dab|

2
                                   (C.14). 

In case of the Bohr atom with D = er (C.14) becomes written as 

                                                (dE/dt)dip  = (4e
2
ω

4
/3c

3
) |rab|

2
                                    (C.15).  

It becomes equal to Eq.(B.8) if the average energy (averaged over the time) emitted per 

unit of time is due to a dipole D(t) = er(t) = 2 (|Dab|
2
)

1/2
 cos(ωt) = 2e |rab| cos(ωt).   

(C.2)Quadrupole radiation.                                                                                                    

 If it is necessary to take into account the second term of the expansion (B.8) the 

matrix element  < a |w| b > given by Eq.(C.7)  will be   

        < a |w| b >  = -i Ao < b |(k.r´)(u.p´)| a >  = Ao (ħk/2)μω < b| r´(n.r´)| a >    (C.16),                                          

where ωab = ω, μ the electron mass and n = r´/r´. Eq.(C.16) would be responsible for 

electric quadrupole transitions involving  matrix elements of the products xy, xz and yz 

and dipole magnetic transitions of matrix elements of the angular momentum operators 

Lx, Ly and Lz. In quantum systems with spherically symmetric potential magnetic dipole 

transitions give no contributions to photons emission.
[4]

 So, following the same 

procedure used for dipole radiation we can calculate the total emission probability per 

unit of time within the solid angle dΩ. The general  angular distribution of the 

quadrupole radiation is very complicated. 
[2,20,21]  

 As we only intend to obtain an order 

of magnitude of the quadrupole radiation  we put 

                                                                                                                                                                                           

                          (Pab
+
)Q ≈ (ω

5
/2πħc

5
)|Qab|

2
                                        (C.17), 

where, the quadrupole matrix element is represented by Qab.  So, the total energy per 

unit of time (dE/dt)Q emitted by the quadrupole is given by  

                                                (dE/dt)Q ≈ (ω
6
/2πc

5
)|Qab|

2
                                         (C.18). 
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In classical electrodynamics we have
[2]

 

                                        (dE/dt)class ≈ (ck
6
/240)Qo

2  
= (ω

6
/240c

5
) Qo

2
                     (C.19). 

 Let us estimate  (Pab
+
)Q, given by Eq.(C.17), for systems emitting optical 

frequencies ω ~ 10
15

/s  and with atomic dimensions a ~10
-7

 cm. Taking Qab ~ ea
2 
we 

verify that   

                                           (Pab
+
)Q ≈ (ω

5
/2πħc

5
)|Qab|

2
 ~  10

5
/s                                 (C.20), 

that is, (Pab
+
)Q  ~ 10

-4
 (Pab

+ 
)dip.               

     

(C.3)Multipole tensor operators Tℓm(θ,φ).                                                                              

 Since calculations of quadrupole and magnetic dipole transitions and of higher 

order terms of the expansion (B.8) are very intricate it is convenient to use a different 

approach to estimate these matrix elements. In this way are used the tensor multipole 

operators Tℓm(θ,φ) defined by 
[2,4,20,21]

 

              Tℓm(r,θ,φ) = [4π /(2ℓ +1)]
1/2

 r
ℓ
 Yℓm(θ,φ) = [4π /(2ℓ +1)]

1/2
 r

ℓ 
|ℓm>            (C.21), 

where ℓ =1, 2,...correspond to dipole, quadrupole ,... and the angle θ is between k and r. 

 If the state functions are given by  unℓm(r,θ,φ) = Rnℓ (r) |ℓm > the transition 

probabilities per unit of time Pab will directly proportional to |aE(ℓ,m)|
2
 where the 

amplitudes  aE(ℓ,m) are given, for ka << 1, by
[4]

 

                             aE(ℓ,m) = - [4π/(2ℓ+1)!!](ℓ+1/ℓ)
1/2

 k
ℓ+2 

Qℓm                                (C.22),  

where                                                                                                                                    

      Qℓm 
=   ∫dr r

ℓ+2
 Ra (r) Rb (r) < ℓbmb|Yℓm

*
(θ,φ)| ℓama >.     

The matrix element  < n´j´m´|Tk
q
 | n j m > according to the Wigner-Eckart Theorem 

(WET)
[22]

 is given by < n´j´m´|Tk
q
 | n j m > = (jkmq|j´m´) (n´j´||Tk||nj), where 

(jkmq|j´m´) ≠ 0 only when  m + q = m´ and |j - k| ≤  j´ ≤ j + k.                                            

 For dipole (ℓ=1)  using Eq.(C.18) the transition probabilities per unit of time Pab 

between  states  | a > and | b > are proportional to |Dab|
2
 where,  

                       |Dab| =  (4π /3)
1/2

 ∫ dr r
3
 Ra (r) Rb (r) < ℓbmb|Y10(θ,φ)| ℓama >             (C.23). 

Thus, following the WET the a → b transition is allowed only if we have:  

                                           ℓb  = ℓa  ± 1      and     mb = ma .                                    

This kind radiation is called electrical dipole radiation and is denoted by E1.           

 For electric quadrupole (ℓ=2) Pab is proportional to |Qab|
2
 where          

                           Qab 
=   ∫dr r

4
 Ra (r) Rb (r) < ℓbmb|Y2m

*
(θ,φ)| ℓama >                         (C.24), 

showing that quadrupole transitions  a → b  are allowed only if   

                                            ℓb  = ℓa  ± 2   and    mb = ma + 2                                   (C.25).                                                
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This kind of radiation is called electric quadrupole radiation and is denoted by E2.                                                                                                                                                                     

(C.4)Second quantization approach.                                                        
 Basic ideas on the quantization of radiation can be seen in many books.

  
In 

vacuum, with the Lorentz gauge the electromagnetic field A(x
μ 

) is given by
[4,21] 

      

div(A) = 0, ∂μ∂
μ 

= □A = 0, μ =1,2,3,4, xμ = (x, ict) and Aμ = (A,iφ).                             

 The general solutions of the above equations for A is formed by superposing  

transverse waves
[2,4]

 of the field A(xμ). In the second quantization context planes waves 

A are written as (omitting details of normalization constant, wave polarization,...)  

                              A(xμ) = Σkω [akω exp(ikμxμ
 
+ a*kω exp(-ikμxμ

 
)]/√ω                   (C.26), 

where kμ = (k,iω/c) , akω and a*kω are the creation and annihilation photon operators, 

respectively.                 

 In this approach transition probabilities Pab are now estimated with Eq.(C.26) 

the field operator  A defined by Eq.(C.22). Taking into account transitions involving  

vacuum states and wavefunctions unℓm(r,θ,φ) = Rnℓ (r)|ℓm >  we get the same results 

obtained before without the second quantization  approach. The main difference now is 

that the electromagnetic radiation is composed by photons.  Selection rules obeyed in  

electrical dipole radiation (E1) show that photons must have spin 1.   
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